User Manual

DY1000 使用说明书

前言

- 感谢您购买本公司产品!
- 本手册是关于仪表的功能、设置、接线方法、操作方法、故障处理方法
 等的说明书。在操作之前请仔细阅读本手册,正确使用。
- 在您阅读完后,请妥善保管在便于随时翻阅的地方,以便操作时参照。

注意

- 本手册内容如因功能升级等有修改时,恕不通知。
- 关于本手册内容我们力保正确无误,如果您发现有不妥或错误,请与我 们联系。
- 本书内容严禁全部或部分转载、复制。

版本

IM05L1HC01-01C 第三版 2011 年 5 月

确认包装内容

打开包装箱后在您使用之前请确认以下事项。一旦您收到的产品有误、 数量不对、外观不对,请与我公司或销售网点联系。

仪表外观

附件

配有下述附件。确认有无短缺或损伤。

序号	名称	数量	备注
1	安装支架	2	用于面板固定
2	使用说明书	1	本书
3	合格证	1	生产日期

前言

本手册中使用的记号

注意记号

操作上的标记

在操作说明中使用下述标记

- [] 表示按键名称。例如 [翻页], [确认]
- 『 』 表示参照章节。例如 『输入部分』

使用注意事项

- 本仪表中塑料零部件较多,清扫时请使用干燥的柔软布擦拭。不能使用苯剂,香蕉水等药剂清扫,可能造成变色或变形。
- 请不要将带电品靠近信号端子,可能引起故障。
- 请不要对本表冲击。
- 如果您确认仪表中冒烟,闻到有异味,发出异响等情况时,请立即切断供电电源,并及时与供货商或我公司取得联系。

第1章 仪表概要	1
第2章功能特点	
2.1 模拟信号输入	3
2.2 温压补偿功能	4
2.2.1 常用流量传感器流量表达式	4
2.2.2 常用物性参数计算	5
2.2.3 体积流量与质量流量的换算	6
2.2.4 雷诺数计算公式	6
2.3 数据记录功能	7
2.4 累积报表功能	7
2.5 液晶显示功能	8
2.6 报警输出功能	9
2.7 模拟变送输出	9
2.8 串口通讯功能	10
2.9 传感器配电	10
第3章 安装及接线	11
3.1 仪表安装	11
3.2 连接测量输入/输出信号线	14
3.3 连接电源	16
3.4 RS485 通讯接口连接	17
第4章 画面与按键操作	
4.1 运行画面按键操作	19
4.2 历史曲线画面按键操作	20
4.3 功能画面按键操作	20
4.4 组态画面按键操作	21
4.4.1 进入组态	21
4.4.2 选择组态	21
4.4.3 确认操作	22
4.4.4 保存组态	22
4.5 参数编辑按键操作	23
第5章功能画面操作	24
5.1 中间参数画面	24
5.2 停电记录画面	24
5.3 历史数据画面	25
5.4 累积报表画面	25
5.4.1 月报表画面	26
5.4.2 日报表画面	26
543 时段杳询画面	26

目 录

5.5 报警记录画面	27
5.6 操作日志画面	27
5.7 密码修改画面	28
第6章 装置组态	
6.1 选择测量装置	30
6.2 标准孔板/喷嘴/文丘里管参数设置	31
6.3 V 锥流量计参数设置	32
6.4 通用差压流量计参数设置	33
6.5 脉冲输出(频率型涡街)流量计	34
6.6 电流输出型流量计参数设置	35
6.7 弯管流量计	35
6.8 质量流量计	35
第7章 介质组态	36
7.1 选择测量介质	36
7.2 饱和蒸汽 介 质组态	37
7.3 过热蒸汽介质组态	37
7.4 水介质组态	38
7.5 一般液体介质组态	38
7.6 单一气体、一般气体介质组态	39
7.7 混合气体、人工煤气介质组态	40
7.8 用户介质组态	40
第8章输入组态	41
8.1 输入基本参数设置	42
8.2 小信号切除设置(切除)	43
8.3 滤波参数设置(滤波)	43
8.4 线性调整设置(调整 K、B)	43
8.5 断线补偿参数设置	43
8.6 测频周期	43
第9章 流量组态	44
9.1 流量组态基本参数设置	44
9.2 高级结算参数设置	45
9.3 停汽判断参数设置	46
第10章 热量组态	47
第 11 章 功能组态	49
11.1 系统组态	49
11.1.1 日期和时间	49
11.1.2 记录间隔	50
11.1.3 仪表编号	50
11.1.4 清除日志记录	50

11.1.5 清除报警列表	
11.1.6 清除历史记录	50
11.1.7 清除累积报表	
11.1.8 清除停电记录	
11.1.9 恢复出厂设置	51
11.2 报警组态	
11.3 输出组态	53
11.4 通讯组态	53
11.5 画面组态	54
11.6 系统信息	54
第12章 规格	
12.1 信号输入与报警	55
12.2 显示功能	55
12.3 数据保存功能	56
12.4 其它标准功能	56
12.5 一般规格	56
附录 常用气体标况密度	

第1章 仪表概要

本仪表依据有关国际标准、国家及行业标准,针对不同介质和流量传感器,建立了多种流量数学模型,精确进行流量测量与计算。可广泛应用于石化、化工、冶金、电力、轻工、医药及城市燃气、供热等行业的贸易结算和工厂计量管理网络。

使用范围

- 适用介质:天然气、煤气、过热蒸汽、饱和蒸汽、通用气体、混合气体、水、热水、液体(油品、化工产品)等。
- 流量传感器:节流式流量计(各类孔板, ISA1932 喷嘴, 长径喷嘴, 文丘里喷嘴, 经典文丘里管)、V型锥流量计、弯管流量计、涡街流 量计、涡轮流量计、电磁流量计、质量流量计等。

补偿运算

- 依据 GB/T2624-2006(ISO 5167-2003)对节流式流量计的流出系数 C、 压缩系数 Z、流速膨胀系数 ε进行实时计算。
- 蒸汽密度依据 IAPWS-IF97 公式计算。
- 天然气物性参数依据 SY/T6143-2004 标准执行。
- 计量管理
 - 流量单位自动换算,分段流量系数设定。
 - 演算功能:同时显示流量计算中的各种中间参数,密度 ρ,雷诺数 Red,流出系数 C,压缩系数 Z,可膨胀系数 ε,动力粘度 μ,等熵指 数 κ等。
 - 贸易结算:小信号切除、小流量补足、超限补偿计量。
 - 审计记录:记录仪表上电、停电时间,记录累计停电时间。停电补足 计量。记录修改组态参数时间。
 - 数据记录:同时记录流量、温度、压力、差压(频率)、密度等瞬时量。
 - 报警记录:记录差压 (频率),温度,压力的超限时间。
 - 累积报表:累积流量、热量日报表、月报表。
 - 容错功能:温度、压力信号异常时,用对应的预先设定值进行补偿运算。
 - 通讯功能:标准 Modbus RTU 协议, RS-485 通讯接口,支持 GPRS 远程通讯。

仪表部件

1. LCD 画面

显示各种运行画面,组态画面。

2. 键盘

按键名称分别为:左移、右移、增加、减少、确认、翻页。

- 操作盖 操作按键时请打开盖子(盖子上方有缺口部分,扣住缺口即可打开)。 操作完毕请务必关好操作盖。
- 电源端子
 连接电源线和接地保护线(含保护盖板)。
- 5. 端子接线图 信号端子的分布和各输入输出信号的接线方式。
- 输入输出信号端子
 连接测量对象的输入信号线和模拟电流输出的信号线。
- 7. 安装支架 面板安装时,固定仪表使用。

第2章 功能特点

2.1 模拟信号输入

测量通道数/测量周期

仪表为3通道输入,仪表测量周期为1秒。

输入种类和运算

本仪表支持以下信号类型

通道	输入方式	输入类型	测量范围
法旦	直流电流	4~20mA	4.00mA ~ 20.00mA
<u> </u>	频率	0~10000Hz	0~10000Hz
	热电偶	К	0°C ∼1300°C
		Е	0°C ∼1000°C
温度、压力		Т	0°C ~ 380°C
	热电阻	PT100	-200.0℃ ~650.0℃
	直流电流	4~20mA	4.00mA ~ 20.00mA

断偶断线处理

用直流电流、热电偶、热电阻测量时,可以设定信号断线后,使用断线补偿参数进行补偿。

滤波器

使用数字滤波器可以抑制输入信号带来的干扰影响。在仪表中标准配备 有数字滤波功能,可以对每个测量通道分别进行设定。 2.2 温压补偿功能

2.2.1 常用流量传感器流量表达式

标准节流装置的质量流量表达式:

式(1)中,ε、C的计算按照 GB2624-2006《用孔板、喷嘴和文丘里管流 量充满圆管的流体流量》或 ISO5167:2003(E)《用安装在充满流体的圆 形截面管道中的差压装置测量流量》进行。

涡街(或涡轮)流量传感器配温度、压力补偿测量气体(非烃类) 质量流量表达式:

式(3)中: q_m ——质量流量,kg/h; F——涡街(或涡轮)流量计发出的脉冲信号频率,Hz; K——涡街(或涡轮)流量计的平均仪表系数,1/L; P——工况压力; ρ_N ——标准状态下气体密度,kg/m³; P_N ——标准大气压,Pa; Z_N ——标准状态下气体压缩系数(无量纲); Z——工作状态下气体压缩系数(无量纲); T_N ——标准状态下气体温度,K; *T*——工作状态下气体温度,K。 式(3)中,Z值的计算依据式(7)进行。

涡轮流量计配温度补偿测量液体(汽油或者柴油)质量流量表达 式:

$$q_{m} = 3.6 \times \frac{F}{K} \rho_{20} \left[1 - \lambda (t - 20) \right]$$
(4)

式(4)中: q_m ——质量流量,kg/h; λ ——体积温度系数,1/℃; K ——涡轮流量计的平均仪表系数,1/L; F ——涡轮流量计发出的脉冲信号频率,Hz; ρ_{20} ——20℃时液体(油品)密度。

涡街流量计配压力(或温度)或压力和温度测量饱和或过热蒸汽 质量流量表达式:

2.2.2 常用物性参数计算

非烃类干气体密度计算:

蒸汽密度计算:

蒸汽密度依据 IAPWS-IF97 公式计算。

天然气物性参数计算:

依据 SY/T6143-2004《天然气流量的标准孔板计量方法》标准执行。

2.2.3 体积流量与质量流量的换算

质量流量表达式:

 $q_m = q_V \rho \tag{8}$

工况体积流量表达式:

$$q_V = \frac{q_m}{\rho} \tag{9}$$

标况体积流量表达式:

2.2.4 雷诺数计算公式

$$Re_{D} = \frac{4q_{m}}{3600\pi\mu D}$$
.....(11)
式(11)中: µ—介质动力粘度, Pa S;
D——管道直径, m。

2.3 数据记录功能

本仪表实时保存测量数据和运算数据,写入内部存储器中。

测量周期

仪表测量周期固定为1秒,每个测量周期内完成测量和运算工作。

记录间隔

仪表根据记录间隔参数,定时保存数据至内部存储器。 记录间隔可选: 1 分/2 分/5 分/10 分/20 分/30 分/60 分。 记录时长: 1 分钟记录间隔,可连续记录 2 个月。

记录数据

仪表每个记录间隔存储流量、差压、温度、压力、累积流量、热量、累 积热量(热量功能启用时)。

停电补足

仪表断电后,在上电初始化时将断电时间的数据补足。

2.4 累积报表功能

累积报表

仪表提供流量累积报表和热量累积报表。

报表查询

仪表提供日累积报表、月累积报表和报表按时段查询功能。

2.5 液晶显示功能

液晶显示器

本仪表装有 128×64 点阵液晶显示器(LCD)(横 128×纵 64 点)。 显示画面包括运行画面、历史曲线、功能画面、组态画面 4 部分。

A001	он 10-10-20	\$
差压	15.000 kPa	
温度	354.0 °C	
压力	2.000 MPa	

功能画面	14:05:00
中间参数	停电记录
历史数据	累积报表
报警列表	操作日志
密码修改	

运行画面

上电即进入运行画面。该画面可自动循环显示或手动显示流量、差压、 温度、压力、密度、累积流量、热量、累积热量(热量功能开启时)等 数据。

历史曲线

按[翻页]键切换至历史曲线。

该画面可以曲线的形式追忆查询或定点查询流量、差压、温度、压力、 热量(热量功能开启时)等数据。

功能画面

按[翻页]键切换至功能画面。

提供中间参数、停电记录、历史数据、累积报表、报警列表、操作日 志、密码修改入口。

组态画面

同时按下[左移]加[翻页]键进入组态模式。

可设定流量测量装置、测量介质、输入参数、流量参数、热量参数、贸 易结算等参数。

2.6 报警输出功能

本仪表提供2路报警继电器输出功能。

报警类型

可设定下述 2 种报警类型:

- 上限报警:如果测量值大于报警设定值则发生报警。
- 下限报警:如果测量值小于报警设定值则发生报警。

回差参数

为防止在报警临界点左右频繁报警,可设定回差。 回差值根据信号的波动幅度设定。

2.7 模拟变送输出

本仪表提供1路4-20mA 模拟变送输出功能。 可根据瞬时流量、瞬时热量、差压、温度、压力变送输出。 模拟输出负载小于 750Ω。

2.8 串口通讯功能

本仪表提供标准 RS485 串行通讯接口,采用国际通用标准 MODBUS-RTU 通讯协议,提供 03 号读保持寄存器命令。 通讯数据及寄存器地址如下表:

参数	类型	地址	说明		
瞬时流量	float	40001			
差压/频率	float	40003			
温度/供温	float	40005	内空空奴据于 P 排列顺序和通机组态 由字节态换一致 以下米同		
压力/回温	float	40007	中于卫文换一致,以下关问。		
累积流量	ulong	40009	4字节长整形。		
瞬时热量	float	40011	4 字节浮点数。		
累积热量	ulong	40013	4字节长整形。		
密度	float	40015	4 字节浮点数。		
最后一次断电时间	ulong	40017	4 字节长整型,时间为日历时间格式。		
最后一次上电时间	ulong	40019	4 字节长整型,时间为日历时间格式。		
总掉电时间(秒)	ulong	40021	4字节长整型。		
总掉电次数	ushort	40023	短整形。		
差压断线标志	ushort	40024	短整形。0为正常,1为断线。		
温度/供温断线标志	ushort	40025	短整形。0为正常,1为断线。		
压力/回温断线标志	ushort	40026	短整形。0为正常,1为断线。		
系统时间	uchar[6]	40027	整形。uchar[0]-uchar[5]分别代表年、		
			月、日、时、分、秒。		
注:仅提供实时数据通讯接口,不包含历史数据、累积报表及其它数据。					

2.9 传感器配电

本仪表提供 3 组 24VDC 和 1 组 12VDC 传感器电源,输出电流单路最大 30mA。差压 24V 配电和压力 24V 配电共地,频率 24V 配电和 12V 配电 共地。

第3章 安装及接线

3.1 仪表安装

对本仪表的安装场所,安装方法进行说明,安装时请务必阅读此部分。

请安装在下述场所:

- 仪表盘
 - 本仪表为盘装式。
- 安装的地方 要安装在室内,且能避开风雨和太阳直射。
- 通风良好的地方
 为了防止本仪表内部温度上升,请安装在通风良好的地方。
- 机械振动少的地方
 请选择机械振动少的地方安装。
- 水平的地方 安装本仪表时请不要左倾或者右倾,尽量水平(可后倾<30°)。
 注意

将仪表从温度、湿度低的地方移至温度、湿度高的地方,如果温度变化 大,有时会结露,热电偶输入时会产生测量误差。这时,请先适应周围环境 1 小时以上再使用。如果在高温条件下长时间使用会缩短 LCD 的寿命(画面 质量降低等)。

请不要安装在下述地方:

- 太阳光直射到的地方和热器具的附近 请尽可能选择温度变化小,接近常温(23℃)的地方。如果将仪表安 装在太阳光直射到的地方或者热器具的附近,会对仪表内部产生不良 影响。
- 油烟,蒸汽,湿气,灰尘,腐蚀性气体等多的地方 油烟,蒸汽,湿气,灰尘,腐蚀性气体等会对仪表产生不良影响。
- 电磁发生源的附近 请不要将有磁性的器具或磁铁靠近本仪表。如果将本仪表安装在强电 磁场发生源的附近,磁场的影响会带来显示误差。
- 不便于观看画面的地方
 本仪表显示部分用的是液晶显示屏,如果从极其偏的角度看上去就会 难以看清显示,所以请尽量安装在观察者能正面观看的地方。

安装方法

仪表盘请用 2~12mm 的钢板。

- 1、从仪表盘前面放入仪表。
- 2、用仪表所带的安装支架如下图所示安装。
 - 在仪表两侧用两个安装支架固定。
 - 仪表盘安装支架所用螺钉是 M4 标准螺钉。

安装图

仪表安装尺寸

3.2 连接测量输入/输出信号线

对测量输入/输出信号线的接线进行说明。连接测量输入/输出信号线之前请务必阅读此部分。

<u>注</u>意 如果对仪表的接线施加较大的拉力,会造成本表的端子或线的破损。为了防 止对本表端子直接施加拉力,请将全部接线固定在安装仪表盘的背面

接线方式

- 1、接线前将仪表的电源断开。
- 2、将输入/输出信号线与输入/输出端子连接。
- 3、为了防止接触不良,接线后请认真拧紧螺钉。
- 4、建议使用绝缘套筒压接端子(4mm 螺钉用)。

```
() 带有绝缘套的压线端子
```

请注意在测量回路中不要混入干扰

- 测量回路请与电源供给线(电源回路)或者接地回路分开。
- 测量对象最好不是干扰源,一旦无法避免,请将测量对象和测量 回 路绝缘,并将测量传感器接地。
- 对于静电感应产生的干扰,使用屏蔽线较好。
- 对于电磁感应产生的干扰,如果将测量回路接线等距离密集绞接比较 有效。

热电偶输入时,请注意要使端子温度稳定

- 请不要使用散热效果好的粗线(建议使用截面面积 0.5mm2 以下 的线)。
- 注意尽量不要使外部气温变化。特别是附近的排气扇的开关会产生较大的温度变化。

如果将输入接线与其它仪表并联,会相互影响测量值

- 不得已需要并联时:
- 运行中请不要开关其中一个仪表的电源。这样会对其它仪表产生不良 影响。
- 热电阻原理上不能并联。
- 电流信号原理上不能并联。

端子和接线图

逻辑分类	端子号	端子名称	逻辑分类	端子号	端子名称
压力通道/	1	3A	通讯	14	А
回温通道	2	3B		15	В
	3	3C		16	G
	4	P24V	差压通道	17	1A
继电器	5	1 R		18	1B
	6	1 R		19	Q24V
	7	2R		20	
	8	2R	频率通道	21	F12V
温度通道/	9	2A		22	F24V
供温通道	10	2B		23	Fr+
	11	2C		24	Fr-
输出通道	12	AO+			
	13	AO-			

流量表接线图(220VAC供电)

流量表接线图(24VDC 供电)

3.3 连接电源

对电源的连接方式进行说明。连接电源时请务必阅读此部分。

电源接线时的注意事项

进行电源接线时请遵守下述警告。否则可能引起触电或者损坏仪表。

` +	ᆂ
)±	息
	,

- 为了防止触电,请确认仪表未通电。
- 为了防止火灾,请使用双重绝缘线。
- 对于电源接线和保护接地接线请使用绝缘套压接端子(4mm 螺钉用)。
- 在 220VAC 电源回路中请设置一个空气开关,将本表与总电源隔开。
 空气开关上明确表示出它是本表的电源切断前端。
 空气开关规格:电流额定值 3A 以上
- 220VAC 电源回路中请连接 2A~15A 的保险丝。
- 24VDC 电源回路中请连接 1A 的保险丝。

接线方式

- 1. 将电源线和电源端子连接。
- 2. 为了防止接触不良,接线后请认真拧紧螺钉。
- 建议使用绝缘套筒压接端子(4mm 螺钉用)。
 一一一带有绝缘套的压线端子
- 4. 通电。

接点规格

项目	内容
输入电压	85VAC \sim 265VAC 或 22VDC \sim 26VDC
输入频率	50Hz

3.4 RS485 通讯接口连接

对 RS485 通讯接口连接方式进行说明。 连接时请务必阅读此部分。

接线方式

A	B	G
---	---	---

RS485 通讯端子对应关系见下表

端子名称	RS485
А	485A
В	485B
G	/

连接方式

#1[~]#n-1之间不连接终端电阻

通讯规格

项目	内容
波特率	1200/2400/4800/9600/19200/38400/57600
数据格式	8 位数据位,1 位停止位
校验	奇校验/偶校验/无校验

第4章 画面与按键操作

按键说明

- (4): 左移键,向左移动光标。
- ▶ : 右移键,向右移动光标。
- (本): 增加键, 增加光标所在值的量。
- ▼:减少键,减少光标所在值的量。
- (En):确认键,执行光标所在按钮的动作或者编辑光标所在值。
- 副页键,切换运行画面与功能画面。
- < + 🔊 : 组态键,同时按下,进入组态画面。

4.1 运行画面按键操作

使用 [翻页] 键切换运行画面、历史曲线画面与功能画面。 报警标志 日期时间

仪表编号 —	A001	он оц 10-10-20	4 -	—— 巡显标志
	差压	15.000 kPa		
	温度	354.0 ℃		
	压力	2.000 MPa		
	实时	 数据]

自动巡显

使用 [确认] 键开启或关闭自动巡显。巡显间隔在画面组态中设置。 画面右上角显示功能状态标志。

自动巡显打开标志 🕂 ,自动巡显关闭标志 🜩 。

手动循环

自动巡显关闭时,使用[增加][减少]键手动查看数据参数。

报警标志

任意通道存在报警时,该标志有效。报警:●H,无报警:OH。

4.2 历史曲线画面按键操作

连续追忆

使用[确认] 键切换追忆方式。 画面右上角显示追忆状态标志。 连续追忆标志 ← ,定点追忆标志 **↓**。

定点追忆

定点追忆模式时,使用[增加][减少]键修改时间,按[确认]键查看历 史数据参数。

4.3 功能画面按键操作

使用	「翻页]	键切换运行画面与功能画面。
	L曲カリンミー	庭勿厌乏门宫回う勿能宫回。

功能画面	14:05:00
中间参数	停电记录
历史数据	累积报表
报警列表	操作日志
密码修改	

使用 [左移] [右移] 键移动光标。

使用〔确认〕键进入对应功能画面。

使用〔翻页〕键退出当前功能画面。

4.4 组态画面按键操作

4.4.1 进入组态

同时按下 [左移] + [翻页] 键进入组态画面。 请输入供方密码 000000 ご 1 000000 ご 11HC1000 退出 L1HC1000 退出 L1HC1000 退出

使用 [左移] [右移] 键移动光标。 使用 [增加] [减少] 键输入密码。 光标处于<mark>密码</mark>处时,使用 [确认] 键确认密码输入。 光标处于<mark>退出</mark>处时,使用 [确认] 键退出组态画面。

注意	
为防止恶意修改组态,仪表提供双重密码保护,	只有当需方密码和供
方密码都正确时,才能进入组态画面。	
默认初始密码为 000000。	

4.4.2 选择组态

组态	
装置组态	介质组态
输入组态	流量组态
功能组态	热量组态
	退出

使用[左移][右移]键移动光标选择组态入口。 使用[确认]键进入对应组态画面。

4.4.3 确认操作

执行不可恢复操作时,会弹出确认操作对话框,减少误操作。 主要包括以下操作:恢复出厂设置、清除停电记录、清除累积报表、 清除报警列表、清除日志记录、清除累积流量、清除累积热量。

确定恢复出厂设置?	
是否	

选择是,确定执行该操作功能。

选择否,不执行该操作功能。

4.4.4 保存组态

参数设定完成后,选择<mark>退出</mark>,弹出确认保存对话框。

	是否保存组态参数?
	是否取消
选择 <mark>是</mark> ,保存设知	定内容,并退出组态画面。

选择<mark>否</mark>,不保存设定内容,并退出组态画面。

选择取消,返回组态画面,继续设定参数。

4.5 参数编辑按键操作

可修改的参数项分为两种类型,分别是参数选择和数值编辑。

参数选择

使用 [增加] 和 [减少] 键选择光标所在的参数项的内容。 部分简单数值输入也采用 [增加] 和 [减少] 键操作。

数值编辑

当输入数值较大时,通过输入面板输入数值。 移动光标到编辑参数项,使用[确认]键,弹出输入面板进行输入操作。

使用 [左移] [右移] 键移动软键盘区的光标。

使用[确认]键选择光标所在的数字至输入框。

删除<mark>功能:</mark>删除输入框中最后一个字符。

取消 功能: 取消编辑,退出输入面板。

确认 功能:确认编辑,退出输入面板。

注意

当输入的值超出范围时,将无法确认,并且输入值的正确范围会以黑底显示, 提示用户检查输入数值。

第5章 功能画面操作

本章将对功能画面进行详细说明。

功能画面包括中间参数、停电记录、历史数据、累积报表、报警列表、操作 日志和密码修改。

5.1 中间参数画面

当测量装置为非弯管时,显示流量计算的中间参数:热焓、雷诺数、流 出系数 C、流量系数 α 、可膨胀系数 ε 、粘度 μ 、等熵指数 κ 等参数。

中间参数	01/03
密度 p 7.5398	kg/m ³
流出系数C 0.602	
雷诺数 4219675.500	
流量系数 a 0.672	

操作

使用 [增加] [减少] 键手动翻阅各中间参数。 使用 [翻页] 键退出该画面。

5.2 停电记录画面

显示最新 50 条停电记录。

停电记录包括停电时间、上电时间、本次停电时长和总停电时长。

停电记	记录	01/40
停电	10-10-20 08:3	30:00
上电	10-10-20 09:0	00:00
时长	0天0时30分0秒	>
总共	9天20时1分30秒	眇

操作

使用 [增加] [减少] 键查询停电记录。

使用〔翻页〕键退出该画面。

5.3 历史数据画面

查询流量、差压、温度、压力、累积流量和累积热量等历史数据。 数据追忆模式分为连续追忆和定点追忆,使用[确认] 键切换。

连续追忆

定点追忆

数据查	询	4
间隔	01分	
时间	10-10-20 11:00	
通道	流量	
数据	0.113	

数据查i	洵	┦
间隔	01分	
时间	10-10-20 11: <mark>00</mark>	
通道	流量	
数据	0.113	

操作

连续追忆模式下:

使用 [左移] [右移] 键调整追忆时间。 使用 [增加] [减少] 键选择查询通道。

使用〔翻页〕键退出该画面。

定点追忆模式下:

使用 [增加] [减少] 键调整追忆时间。

使用〔确认〕键确认定点时间追忆。

使用〔翻页〕键退出该画面。

5.4 累积报表画面

累积报表包括流量报表和热量报表(开启热量功能时才有热量报表)。 报表查询支持月报、日报和时段查询。

累积报	表		
类型	流量报表		
查询	月报	日报	
	时段		

操作

使用 [左移] [右移] 键移动光标。

使用[增加][减少]键可选择流量报表或热量报表。

使用〔确认〕键查询相应报表。

使用〔翻页〕键退出该画面。

5.4.1 月报表画面

累积月报表显示最近1年的流量统计报表。

月报表	t	01/04
2009-10		1200.00
2009-11		1000.00
2009-12		800.00
2010-01		900.00

操作

使用[增加][减少]键查询报表数据。 使用[翻页]键退出该画面。

5.4.2 日报表画面

累积日报表显示最近1年的流量统计报表。

日期 10-10-01	t
10-10-01	100.00
10-10-02	200.00
10-10-03	150.00
10-10-04	120.00

操作

使用 [左移] [右移] 键移动光标。

使用 [增加] [减少] 键调整查询时间。

使用〔翻页〕键退出该画面。

5.4.3 时段查询画面

查询最近1年中任意时段内的总累积流量或累积热量。

时段查	询	
开始	10-10-20	
结束	10-10-22	
单位	t	
累积	38076.92	

操作

使用[左移][右移]键移动光标。 使用[增加][减少]键调整查询时间。 使用[翻页]键退出该画面。

5.5 报警记录画面

显示最新 50 条报警信息。

报警信息包括报警时间、消报时间、报警类型和报警通道。

报	警列	表		01/50
报	響	10-10-20	10:30):00
消	报	10 - 10 - 20	10:40	0:00
类	型	下限L		
通	İ道	温度		

操作

使用[增加][减少]键查询报警信息。 使用[翻页]键退出该画面。

5.6 操作日志画面

显示最新 50 条操作日志。 操作日志包括操作内容和操作时间。 记录以下操作类型:

- 修改组态参数
- 修改流量累积倍率
- 修改热量累积倍率
- 清除流量累积
- 清除热量累积
- 修改记录间隔

操作

使用[增加][减少]键查询操作日志。 使用「翻页]键退出该画面。

5.7 密码修改画面

修改组态权限密码,包括供方密码和需方密码。 在修改密码时,需先输入原始密码,确认后才能输入新密码。

供方密码修改	
请输入供方密码	
000000	确认

操作

使用[左移]和[右移]键移动光标。 使用[增加][减少]键修改密码。 使用[翻页]键退出该画面。

第6章 装置组态

流量参数组态由装置组态和介质组态两部分组成,装置组态包括装置类 型及其管道材质、节流件材质、管道口径、节流件口径等相关参数。

仪表支持的管道材质与节流件材质共以下 18 种:

- 1. 15钢, A3钢
- 2. A3F, B3钢
- 3. 10钢
- 4. 20钢
- 5. 45钢
- 6. 1Cr13
- 7. Cr17
- 8. 12Cr1Mov
- 9. 10CrMo910
- 10. Cr6SiMo
- 11. X20CrMoWV
- 12. 1Cr18Ni9Ti
- 13. 普通碳钢
- 14. 工业用铜
- 15. 红铜
- 16. 黄铜
- 17. 灰口铸铁
- 18. 用户自定义(当用户选择自定义材质时,需输入 λD 和 λd)

6.1 选择测量装置

组态位置:组态->装置组态,组态画面如下:

装置类型	<u>i</u>	
类型	标准孔板	
		参数设置

类型

装置类型整理为二级分类,分类表格如下:			
	二级分类		
	法兰取压孔板		
标准孔板	角接取压孔板		
	D 和 D/2 取压孔板		
	ISA1932 喷嘴		
标准喷嘴	长径喷嘴		
	文丘里喷嘴		
	铸造收缩段		
标准文丘里管	机械加工收缩段		
	粗焊铁板收缩段		
V 锥型流量计	无		
通用差压流量计	无		
脉冲输出流量计	频率型涡街		
	4-20mA 型涡街		
电流输出流量计	电磁流量计		
	线性流量计		
弯管流量计	无		
质量流量计	无		

设置完成一级分类装置类型后,进入<mark>参数设置</mark>设定装置二级分类装置及 其详细参数。

	法 吾
	江思
百改法罢米刑后	心须宫成参数设置后才能退出组态
	必须尤成多奴以且口才能必由组芯。

6.2 标准孔板/喷嘴/文丘里管参数设置

设定标准孔板、标准喷嘴、标准文丘里管测量装置相关参数。 组态界面如下(展开图):

参数设置		
装置 法主	兰取压孔	板
开方 本村	乳开方	
管道材质	20钢	
孔板材质	1Cr18N	i9Ti
管道口径	500	mm
孔板口径	400	mm
		退出

装置

测量装置可选:

标准孔板:法兰取压孔板、角接取压孔板、D和D/2取压孔板。 标准喷嘴:ISA1932喷嘴、长径喷嘴、文丘里喷嘴。 标准文丘里管:铸造收缩段、机械加工收缩段、粗焊铁板收缩段。

开方

当流量信号为差压信号时,对差压变送器输出的差压信号的开方种类进 行设定。

- 本机开方:差压变送器没有经过开方,需要仪表对差压信号进行开 方时,选择此设定。
- 差变开方:差压变送器的差压信号已经开方时,选择此设定。

管道材质

用于制造管道的材质,不同的制造材质有不同的线膨胀系数 λD。

节流件材质

用于制造节流件的材质,不同的制造材质有不同的线膨胀系数 \ld。

管道口径

管道在 20℃时的直径。

节流件口径

节流件在 20℃时的直径。

6.3 V 锥流量计参数设置

设定 V 锥流量计测量装置相关参数。组态界面如下(展开图):

参数设置		\$
开方 本林	乳开方	
流出系数	0.00	
膨胀系数	0.00	
管道材质	20钢	
锥体材质	1Cr18N	i9Ti
管道口径	500	mm
V锥直径	400	mm
		退出

开方

当流量信号为差压信号时,对差压变送器输出的差压信号的开方种类进 行设定。

- 本机开方:差压变送器没有经过开方,需要仪表对差压信号进行开方时,选择此设定。
- 差变开方:差压变送器的差压信号已经开方时,选择此设定。

流出系数

V 锥装置设计流出系数(可根据设计书获得)。

膨胀系数

V 锥装置设计膨胀系数(可根据设计书获得)。

管道材质

用于制造管道的材质,不同的制造材质有不同的线膨胀系数 λD。

锥体材质

用于制造锥体的材质,不同的制造材质有不同的线膨胀系数 λ d 。

管道口径

管道在 20℃时的直径。

V锥直径

V 锥在 20℃时的直径。

6.4 通用差压流量计参数设置

设定差压式流量计测量装置相关参数。 组态界面如下(展开图):

参数设置	I.		\$	
开方	本机开	方		
模型	K系数			
K系数目	受数 0	2		参数设置 ◆
差压	0	~ 3	kPa	开方 本机开方
K1=	1.2			模型 设计参数
差压	3	~ 6	kPa	设计温度 220 ℃
K2=	1.4			设计压力 0.6 MPa
			退出	退出

开方

当流量信号为差压信号时,对差压变送器输出的差压信号的开方种类进 行设定。

- 本机开方:差压变送器没有经过开方,需要仪表对差压信号进行开方时,选择此设定。
- 差变开方:差压变送器的差压信号已经开方时,选择此设定。

模型

设定计算模型,可选 K 系数和设计参数。

K 系数段数

K系数分段数,最多10段可组。

K 系数

根据流量公式 $Q = k \sqrt{\Delta P \cdot \rho}$ 设定差压分段 K 系数。

其中 Q 单位为 kg/h, ΔP 单位为 Pa, ρ 为 kg/m³。

设计温度、设计压力

根据流量公式
$$Q = Q_{\max} \sqrt{\frac{\Delta P}{\Delta P_{\max}} \times \frac{\rho}{\rho_d}}$$
设定设计温度、设计压力。

6.5 脉冲输出(频率型涡街)流量计

设定脉冲输出型(频率型涡街)流量计测量装置相关参数。 组态界面如下(展开图):

装置

测量装置可选:频率型涡街。

K 系数段数

K系数分段数,最多10段可组。

K 系数单位

K 系数单位可选:次/m³、次/L。

K 系数

根据流量公式 $Q = f / K \cdot \rho$ 设定频率分段 K 系数。 其中 Q 单位为 kg/h, f 为 Hz, ρ 为 kg/m³。

6.6 电流输出型流量计参数设置

设定电流输出型流量计测量装置相关参数。 组态界面如下:

参数设置	<u> </u> 포 크.	
装置	电磁流量计	
		退出

装置

测量装置可选: 电磁流量计、4-20mA 型涡街。

6.7 弯管流量计

设定弯管流量计测量装置相关参数。 组态界面如下:

开方

当流量信号为差压信号时,对差压变送器输出的差压信号的开方种类进 行设定。

- 本机开方:差压变送器没有经过开方,需要仪表对差压信号进行开方时,选择此设定。
- 差变开方:差压变送器的差压信号已经开方时,选择此设定。

K 系数

根据流量公式 $Q = k\sqrt{\Delta P \cdot \rho}$ 设定差压分段 K 系数。 其中 Q 单位为 kg/h, ΔP 单位为 Pa, ρ 为 kg/m³。

6.8 质量流量计

不进行温压补偿运算,直接计算流量和累积流量。

第7章介质组态

流量参数组态由装置组态和介质组态两部分组成,介质组态包括介质类 型及其温度、压力、大气压等相关参数。

7.1 选择测量介质

组态位置:组态->介质组态,组态画面如下:

介质类	型	
类型	饱和蒸汽	
		参数设置

目前可供选择的介质有以下9类介质:

- 1. 饱和蒸汽(支持温度补偿、压力补偿)
- 2. 过热蒸汽
- 3. 水
- 4. 一般液体
- 5. 单一气体(支持 18 种标准气体:空气 Air, 氮气 N₂, 氧气 O₂, 氦气 He, 氢气 H₂, 氩气 Ar, 一氧化碳 CO, 二氧化碳 CO₂, 硫 化氢 H₂S, 氨气 NH₃, 甲烷 CH₄, 乙烷 C₂H₆, 丙烷 C₃H₈, 丁 烷 C₄H₁₀, 乙烯 C₂H₄, 乙炔 C₂H₂, 丙烯 C₃H₆, 丁烯 C₄H₈)
- 6. 一般气体
- 7. 混合气体
- 8. 人工煤气
- 9. 用户介质

7.2 饱和蒸汽介质组态

设定饱和蒸汽介质组态参数,支持温度补偿和压力补偿。 组态界面如下:

方式

饱和蒸汽补偿方式可选:温度补偿、压力补偿。

湿度

饱和蒸汽湿度值设置,0%~100%可设。

大气压

由于地域因素,大气压有所区别,默认为 0.101325MPa。

7.3 过热蒸汽介质组态

设定过热蒸汽介质组态参数。组态界面如下:

参数设置		
大气压	0.101325MPa	
		退出

大气压

由于地域因素,大气压有所区别,默认为 0.101325MPa。

7.4 水介质组态

设定水介质组态参数。组态界面如下:

参数设置			
大气压	0.101	325MPa	
压力	0.6	MPa	
			退出

大气压

由于地域因素,大气压有所区别,默认为 0.101325MPa。

压力

测量介质水的压力值(热量功能打开时可组)。

7.5 一般液体介质组态

设定一般液体介质组态参数。组态界面如下:

参数设置	1	
密度	1.000	kg/m ³
大气压	0.10132	5MPa
		退出

密度

设置一般液体密度值,固定密度值补偿。 适用于密度不变或变化不大的场合使用。

大气压

由于地域因素,大气压有所区别,默认为 0.101325MPa。

7.6 单一气体、一般气体介质组态

设定单一气体、一般气体介质组态参数。组态界面如下(展开图):

单一气体组态画面

一般气体组态画面

	参数设置 ◆
参数设置 ◆	湿度 0%
介质 丁烯C4H8	标况温度 20℃
湿度 0%	标况密度 2.0 kg/m ³
标况温度 20℃	压缩系数 1.000
大气压 0.101325MPa	大气压 0.101325MPa
退出	退出

介质

18 种标准气体可选:空气 Air, 氮气 N_2 , 氧气 O_2 , 氦气 He, 氢气 H_2 , 氩气 Ar, 一氧化碳 CO, 二氧化碳 CO₂, 硫化氢 H_2S , 氦气 NH_3 , 甲烷 CH_4 , 乙烷 C_2H_6 , 丙烷 C_3H_8 , 丁烷 C_4H_{10} , 乙烯 C_2H_4 , 乙炔 C_2H_2 , 丙烯 C_3H_6 , 丁烯 C_4H_8 。

湿度

湿度值设置,0%~100%可设。

标况温度

气体标况温度可选:0℃或20℃。

标况密度

设定一般气体标况密度。

压缩系数

设定一般气体压缩系数。

大气压

由于地域因素,大气压有所区别,默认为 0.101325MPa。

设置气体组分

设置混合气体组成成分及百分比含量。组分包括18种标准气体。

7.7 混合气体、人工煤气介质组态

设定混合气体、人工煤气介质组态参数。组态界面如下(展开图):

参数设置	\$
湿度 0%	
标况温度 20℃	
大气压 0.101325MPa	
设置气体组分	
	退出

湿度

湿度值设置,0%~100%可设。

标况温度

气体标况温度可选:0℃或 20℃。

大气压

由于地域因素,大气压有所区别,默认为 0.101325MPa。

设置气体组分

设置混合气体组成成分及百分比含量,组分包括18种标准气体。

7.8 用户介质组态

设定用户介质组态参数。组态界面如下:

参数设置	用户表格
大气压 0.101325MPa	序号 01 辺底 100 00 ℃
输入用户表格	密度 1.200 kg/m ³
退出	比热 4.20 kJ/kg.℃ 退出

大气压

由于地域因素,大气压有所区别,默认为 0.101325MPa。

输入用户表格

输入用户自定义温度、密度、比热线性表格,最多 10 段可设。 补偿运算时根据温度查找计算相应密度和比热值。

第8章 输入组态

设定输入组态相关参数,包括差压(体积、频率、流量)、温度、压力 通道设置。

组态位置:组态->输入组态,组态画面如下(展开图):

 输入组态 通道 差压 方式 输入 类型 4-20mA 单位 kPa 量程 4.00 [~] 20.00 切除 0.0% 滤波 0.0秒 	输入组态 ◆ 通道 频率 方式 输入 类型 Fr 单位 Hz 量程 0 ~ 5000 切除 30Hz 50Hz滤波 10秒
调整K 1.00 调整B 0.00 断线补偿 8.00 kPa 退出	调整K 1.00 调整B 0.00 测频周期 10秒 退出
 输入组态 通道 差压 方式 设定 设定值 10.00 单位 kPa 退出 	输入组态 ◆ 通道 压力 方式 计算 退出

8.1 输入基本参数设置

通道

信号输入通道, 仪表共支持 3 通道输入。根据测量装置不同, 通道名称 不同。通道与测量装置对应关系如下表:

测量装置	信号通道
标准孔板	差压、温度、压力
标准喷嘴	
标准文丘里管	
V 锥型流量计	
通用差压流量计	
弯管流量计	
脉冲输出流量计	频率、温度、压力
电流输出流量计	体积、温度、压力
质量流量计	流量、温度、压力

注: 当介质为水,并且开启热量功能时,通道为差压(体积、频率、流量)、供温、回温,无压力通道。

方式

通道输入方式分为:输入、设定、计算三种。

- 输入:外部信号接入。
- 设定:设置通道固定值。
- 计算:当选择饱和蒸汽温度补偿时,压力可以选择计算; 当选择饱和蒸汽压力补偿时,温度可以选择计算。

类型

通道信号类型,不同的通道有不同的信号类型。

- 差压信号:直流电流。
- 频率信号:频率。
- 压力信号:热电偶,热电阻,直流电流。
- 温度信号: 热电偶, 热电阻, 直流电流。

信号类型测量范围如下表

信号	类型	可测量范围
直流电流	4-20mA	4.00mA \sim 20.00mA
频率	FR	0Hz \sim 10000Hz
热电阻	PT100	-200.0 °C \sim 650.0 °C
热电偶	К	0° C \sim 1300 $^{\circ}$ C
	E	$0^\circ C \sim 1000^\circ C$
	Т	0° C \sim 380 $^{\circ}$ C

单位

设置通道单位,参与补偿运算。各通道可组单位如下:

差压: Pa、kPa

频率:Hz

- 体积: L/h、m³/h、km³/h
- 流量:直接使用流量单位,通道单位不可组,kg/h、t/h、 m^3/h 、 km^3/h 温度: ℃
- 压力: kPa、MPa

量程

设定输入信号的量程上下限。

8.2 小信号切除设置(切除)

输入信号小于该值时,执行切除功能,显示量程下限。 输入信号为普通信号时,该值为量程百分比。 输入信号为频率信号时,该值为实际频率值。

8.3 滤波参数设置(滤波)

滤波时间常数设置,范围 0.0 秒~9.9 秒。 滤波计算方法:显示值 = 上次测量值×滤波时间常数+本次测量值 滤波时间常数+1 当信号为频率时,该参数为 50Hz 信号滤波时间参数(0~10 秒)。 若该滤波时间内,频率连续为 50±0.3Hz 时,进行切除滤波处理。

8.4 线性调整设置(调整 K、B)

输入信号值有误差时,可以进行微调。 调整公式:实际值 = 测量值 ×K+B 。

8.5 断线补偿参数设置

当检测到信号断线时,使用该参数作为通道值参与补偿运算。

8.6 测频周期

频率测量周期,对该周期内每秒测量频率值取平均值处理,1~10秒可组。

第9章 流量组态

设定流量组态相关参数。 组态位置:组态->流量组态,组态画面如下(展开图):

流量组态	\$
流量单位	t/h
累积单位	t
流量量程	30000
显示精度	2位小数
流量调整K	1.00
流量调整B	0.00
累积倍率	1
累积初值	0
清除累积流量	
高级结算参数	
停汽判断参数	
	退出

9.1 流量组态基本参数设置

流量单位

设定瞬时流量的单位,单位参与运算。 流量单位: kg/h, t/h, Nm^{3}/h , m^{3}/h , kNm^{3}/h , km^{3}/h 。

累积单位

设定累积流量的单位,单位参与运算。 累积流量单位: kg,t,Nm³,kNm³,m³,km³。

流量量程

瞬时流量量程,仅为显示量程和变送输出使用。 不参与限幅和其它运算。

显示精度

补偿后瞬时流量的显示精度。最多3位小数。

流量调整 K、B

流量值线性调整功能。实际值 = 测量值 ×K+B 。

累积倍率

设定流量累积倍率。 累积流量 = 上次累积量 + 瞬时流量 × 累积倍率。 累积初值

设置累积初始值。执行清除累积流量功能时,使用该值开始累积。

清除累积流量

清除累积流量将清除在内存中的累积流量,清除后无法恢复。 清除累积流量不影响仪表其它参数和功能。

9.2 高级结算参数设置

组态位置:组态->流量组态->高级结算参数设置。 组态画面如下(展开图):

参数设置		\$
停电补足	50%	
小流量阀值	30%	-
小流量补足	30%	
超计划阀值	100%	
超计划补足	200%	
		退出

停电补足

仪表断电后,重新上电时仪表自动补足停电期间损失的累积量。 补足的累积流量=停电补足百分比×流量量程×停电时间。运算单位与瞬 时流量同。

小流量阀值、小流量补足

当实际流量值小于小流量阀值时,自动按照小流量补足进行累积计算, 设置值为流量量程百分比。

超计划阀值、超计划补足

当实际流量值超过设定的超计划阀值时,自动按照超计划补足进行累积 计算,设置值为流量量程百分比。

流量超限计算方法

瞬时流量	累积流量	状态
	累积流量 = 上次累积值 + 小流量补足百分比 × 流量量程	小流量
	累积流量 = 上次累积值 + 超计划补足百分比 × 流量量程	冲顶
小流量阀值 < 瞬时流量 < 超计划 阀值	累积流量 = 上次累积值 + 瞬时流量	正常

9.3 停汽判断参数设置

组态位置:组态->流量组态->停汽判断参数,组态画面如下(展开图):

停汽温度

该参数只针对蒸汽有效,当检测到工况温度低于停汽温度时,认为阀门 完全关闭,瞬时流量为零。

第10章 热量组态

设定与热量组态有关的参数。 测量介质为过热蒸汽或饱和蒸汽,热量为蒸汽热量。 测量介质为水,热量为热水热量,需要输入供温和回温。 测量介质为气体,不支持热量计量。

热量组态	\$
热量功能	启用
热量单位	GJ/h
累积单位	GJ
热量量程	30000
显示精度	2位小数
停电补足	0%
累积倍率	1
累积初值	0
热量类型	热量
计算方式	热焓
清除累积热量	
	退出

热量功能

设定热量功能启用或关闭。

热量单位

设定瞬时热量单位, kJ/h, MJ/h, GJ/h, kWh/h, 单位参与运算。

累积单位

设定累积热量单位, kJ, MJ, GJ, kWh, 单位参与运算。

热量量程

设定瞬时热量量程,仅为显示量程和变送输出使用。 不参与限幅和其它运算。

显示精度

补偿后瞬时热量的显示精度,最多3位小数。

停电补足

仪表断电后,重新上电时仪表自动补足停电期间损失的累积量。 补足的累积热量 = 停电补足百分比 × 热量量程 × 停电时间。 运算单位与瞬时热量同。

累积倍率

设定热量累积倍率。

累积热量 = 上次累积量 + 瞬时热量 × 累积倍率。

累积初值

设置累积初始值。执行<mark>清除累积热量</mark>功能时,使用该值开始累积。

热量类型

热量:供水温度 > 回水温度。 冷量:供水温度 < 回水温度。

计算方法

热焓:根据流体温度查询出热焓。 平均比热容:固定的平均比热容进行计算。

清除累积热量

清除累积热量将清除在内存中的累积热量,清除后无法恢复。 清除累积热量不影响仪表其它参数和功能。

第11章 功能组态

设定仪表基本功能组态参数。组态画面如下:

功能组态		
系统	报警	输出
通讯	画面	信息
		退出

操作

使用 [左移] [右移] 键选择组态。 使用 [确认] 键进入相应组态画面。

11.1 系统组态

组态位置:组态->功能组态->系统,组态画面如下(展开图):

系统组态	\$
日期	2010-10-20
时间	10:05:00
记录间隔	01分
仪表编号	A001
清除日志记录	
清除报警列表	
清除历史记录	
清除累积报表	
清除停电记录	
恢复出厂设置	
	退出

11.1.1 日期和时间

设定仪表运行的当前日期与时间。

	注意	
•	更改系统日期/时间后,仪表中已经存储的历史资料将无效。	
•	新的有效数据从用户更改系统日期/时间开始。	

● 在更改系统日期/时间前,请备份仪表内记录的历史数据。

11.1.2 记录间隔

可选择 1分/2分/5分/10分/20分/30分/60分。 记录时长:1分钟记录间隔,可连续记录2个月。

	注意 注意
增大记录间隔可延长仪表	表存储数据的时间长度。

 修改记录间隔会使仪表内部存储的历史数据失效,因此,在修改记录间隔前,请 备份历史数据,防止丢失。

....

11.1.3 仪表编号

设定仪表编号,用以区别不同使用场合的仪表。一共 4 位,每位可组数 字 0-9 和字母 A-Z。

11.1.4 清除日志记录

清除内存中的操作日志记录,清除后无法恢复。 清除操作日志不影响仪表其它参数和功能。

11.1.5 清除报警列表

清除内存中的报警记录信息,清除后无法恢复。 清除报警列表不影响仪表其它参数和功能。

11.1.6 清除历史记录

清除内存中的历史数据记录,清除后无法恢复。 清除历史记录不影响仪表其它参数和功能。

11.1.7 清除累积报表

清除内存中的流量和热量累积报表,清除后无法恢复。 清除累积报表不影响仪表其它参数和功能。

11.1.8 清除停电记录

清除内存中的仪表停电记录,清除后无法恢复。 清除停电记录不会影响仪表其它参数和功能。

11.1.9 恢复出厂设置

将仪表所有参数和数据恢复至出厂状态。

	ł
<t< td=""><td>*</td></t<>	*
/T	显

- 进行出厂设置后,仪表中已经存储的历史资料将无效。
- 在进行出厂设置前,请备份仪表内记录的历史数据。

出厂设置影响的参数列表

参数种类	参数名称	参数设置值
	类型	标准孔板
装置组态		法兰取压孔板
	开方	本机开方
	管道材质	20钢
	孔板材质	1Cr18Ni9Ti
	管道口径	0mm
	孔板口径	0mm
人氏细去	类型	过热蒸汽
1	大气压	0.101325MPa
	方式	输入
	类型	4-20mA
	单位	kPa
		0.00 ~ 50.00
输入组态	切除	0.0%
	滤波	0.0 秒
	K	1.00
	В	0.00
	断线补偿	0.00
	流量单位	t/h
	累积单位	t
	流量量程	30000
	显示精度	2位小数
	流量调整 K	1.00
	流量调整 B	0.00
四旦建省	累积倍率	1
贝勿知异	累积初值	0
	停电补足	0%
	小流量阀值	0%
	小流量补足	0%
	超计划阀值	0%
	超计划补足	0%
	停汽温度	0
热量组态	热量功能	关闭
	密码	000000
系统组态	记录间隔	01 分
	仪表编号	A001
	报警H	60000
报警组态	触点	00
	报警L	0

	触点	00
	回差	0
输出组态	输出通道	无
通讯组态	通讯地址	001
	波特率	9600
	校验	无校验
	字节交换	2-1-4-3
画面组态	巡显间隔	10 秒

11.2 报警组态

设定通道报警参数及继电器输出触点。 每个通道可设定2个报警值,分别是上限报警和下限报警。 组态位置:组态->功能组态->报警,组态画面如下:

报表组态	ŝ		
通道	流量		
报警H	60000	触点	00
报警L	0	触点	00
回差	0		退出

通道

选择报警通道,流量、温度、压力3路可选。

报警H、报警L

设置上限报警和下限报警参数值。

回差

设置报警回差参数。防止信号在报警值附近振荡时,频繁报警。

报警说明

报警类型	报警条件	消报条件
上限报警	通道值 > 上限阀值	通道值 < 上限阀值 - 回差
下限报警	通道值 < 下限阀值	通道值 > 下限阀值 + 回差

11.3 输出组态

设定变送输出组态参数。可选流量、热量、差压、温度、压力作为输出 源通道。

组态位置:组态->功能组态->输出,组态画面如下:

输出组态	ŝ		
输出通	道	流量	
调整K	1.000		(mA)
调整B	0.000		
			退出

输出通道

设置输出源通道,流量、热量(开启时)、差压、温度、压力可选,结合 量程进行变送输出运算。

调整 K、B

线性调整输出电流。实际输出电流 = 运算输出电流 ×K+B 。

11.4 通讯组态

设定通讯组态参数。

组态位置:组态->功能组态->通讯,组态画面如下:

通讯组态	\$
通讯协议	Modbus-RTU
仪表地址	001
波特率	9600
校验	无校验
字节交换	2-1-4-3
	退出

通讯协议

标准 ModbusRTU 协议。

仪表地址

设置通讯仪表地址, 1-247 可选。

波特率

可选: 1200/2400/4800/9600/19200/38400/57600。

校验

可选: 无校验/奇校验/偶校验。

字节交换

浮点数及长整型数据字节排列方式: 1-2-3-4、2-1-4-3、3-4-1-2、 4-3-2-1。仪表内部原始数据使用先低后高字节排列顺序。

11.5 画面组态

设定运行画 组态位置:	」面巡显 组态-⇒	፤间隔参数。 ⊳功能组态->画	面,组為	这画面如	吓
		画面组态 巡显间隔	20秒		
				退出	

巡显间隔

设置运行画面巡显时间参数。可选 5 秒/10 秒/10 秒/20 秒/30 秒/1 分。

11.6 系统信息

显示生产厂家、程序版本及生产日期等信息。

第12章 规格

12.1 信号输入与报警

测	量	输	λ

项目	规格		
输入通道数	3通道		
测量周期	1秒		
信号类型	直流电流(I)、	热电偶(TC)、热电	阻(RTC)、频率(FR)
输入测量量程与可	「测量范围		
	类型	量程	可测量范围
	直流电流	4 ~ 20mA	4.00 ~ 20.00mA
	频率	FR	$0~\sim~10000 { m Hz}$
	热电阻	PT100	-200.0° C $\sim 650.0^{\circ}$ C
	热电偶	K	$0^\circ C \sim 1300^\circ C$
		Е	0° C \sim 1000 $^{\circ}$ C
		Т	$0^\circ C \sim 380^\circ C$
	测量电流:	I=0.25mA(热电阻)	
断线断偶	采用断线补偿	尝参数进行补偿	
	标准: ≤2kΩ	, 断偶:≥100kΩ	
	检测电流:	约 luA	
			

_ 坝 臼	AX 16
热电偶冷端补偿	使用内部冷端补偿,补偿精度±1℃
数字滤波	0~9.9 秒惯性滤波

报警

项目	规格
报警数目	每个通道支持 2 路报警
报警类型	上限报警、下限报警
显示	发生报警时,在运行画面上显示报警状态。
报警信息	显示报警一览中发生的报警列表

12.2 显示功能

显示

,	
项目	规格
显示*	128×64 点阵单色液晶显示屏

* LCD 显示器部分可能会包含常亮或常灭的像素,由于 LCD 特征的不同,LCD 的亮度也可能不一样,这并非故障。

12.3 数据保存功能

数据类型

项目	规格
采样数据	4 bytes/数据值
累积量	4 bytes/数据值
数据格式	二进制数据
记录周期	1 分/2 分/5 分/10 分/20 分/30 分/60 分
记录方式	总是记录

12.4 其它标准功能

与时间相关的功能

JULI INTERVEN	
项目	规格
时钟	可运行于 2000 年 \sim 2099 年
时钟精度	± 10 ppm($0 \sim$ 50 $^{\circ}$ C),不包括打开电源时所导致的延迟误差(1 秒以下)
时钟电池寿命	约 10 年(室温下)

12.5 一般规格

结构

2413	
项目	规格
安装	嵌入式仪表盘安装(垂直平面)
安装角度	最多允许从水平面向后倾斜 30 度
允许的安装板厚度	$2 \sim 12$ mm
材质	ABS 塑料
外部尺寸	160(W)×80(H)×68(D)(D:从安装面到端子的长度)
重量	约 0.5Kg

标准运行条件

项目	规格
电源电压	220VAC/24VDC
电源频率	50Hz
环境温度	$0^\circ C \sim 50^\circ C$
环境湿度	0% ~ 85%(不结露)
预热时间	接通电源后 30 分钟
安装位置	室内

电源

项目	规格
额定电源电压	220VAC/24VDC
允许电压范围	$85 \mathrm{VAC} \sim 220 \mathrm{VAC}$ / $22 \mathrm{VDC} \sim 26 \mathrm{VDC}$
额定电源频率	50Hz
功耗	$\leq 10 \mathrm{W}$

配电

HO	
项目	规格
配电电压	3 路 24VDC,1 路 12VDC
输出电流	≤30mA
其它	Q22V和P24V共地,F24V和F12V共地

绝缘

项目	规格	
耐电压	测量输入端子之间: ≥400V	
接地电阻	接地电阻 $\leq 10\Omega$	

运输和存储条件

2111111111111	
项目	规格
环境温度	-10° C $\sim 60^{\circ}$ C
环境湿度	0% ~ 95%(不结露)

性能标准

项目	规格
显示/测量精度	数值精度:全量程基本误差 ≤0.2%F.S.
最大输入电压	-2VDC \sim +10VDC
输入阻抗	电压信号: ≥1MΩ
	电流信号: 10Ω
电阻测量激励电流	0.25mA
断偶检测电流	约 luA
最大共模噪声电压	250VACrms(50Hz)
串模抑制	5VDC: 1VAC(50Hz)
	100mV: 100mVAC(50Hz)
	20mV: 50mVAC(50Hz)

其它标准

项目	规格
资料保存年限	约 10 年

附录 常用气体标况密度

空气 (干): 1.2041	氮气: 1.1646	氧气: 1.3302	氦气: 0.1664
氢气: 0.0838	氪气: 3.4835	甲烷: 0.6669	乙烷: 1.2500
丙烷: 1.8332	乙烯: 1.1660	丙烯: 1.7495	一氧化碳: 1.165
二氧化碳: 1.829	硫化氢: 1.4169	二氧化硫: 2.726	

(20℃,标准大气压,单位: kg/m³)